
AN INFORMAL INTRODUCTION TO FORMAL GROUPS

DORON GROSSMAN-NAPLES

Abstract. Infinitesimal objects in algebraic geometry have a rich structure,
but they are difficult to study due to the failure of classical Lie theory in the

algebraic context, especially in characteristic p. This failure can be attributed

to the fact that Lie algebras only capture first-order infinitesimal behavior,
a limitation which vanishes when we shift our focus to a new kind of infini-

tesimal object: formal groups. In this talk, I will describe the basic theory
and examples of formal groups, as well as how they give rise to a surpris-

ing and deep connection between algebraic geometry and algebraic topology:

chromatic homotopy theory.
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1. From Derivatives to Power Series

In differential geometry, we have an adjunction LieGp
//
LieAlgoo _ which in-

terpolates between local and global symmetries. Lie’s theorems tell us that local
smooth representation theory can be completely described by Lie algebras. This is
no longer true for algebraic groups. Some of it can be recovered in characteristic
0, but it fails drastically in characteristic p. Why? Simple: the Lie algebra doesn’t
contain enough information, because it only has first-order infinitesimals.

It is a theorem following directly from the Leibniz rule that in characteristic 0, the
associative algebra of differential operators at a point (in the sense of Grothendieck)
is generated by the regular germs and first-order differential operators ∂

∂xi
. This

fails in positive characteristic, however. For example, over any field k, there is
an nth-order differential operator Dn at 0 on A1(k) given by Dn(xn+1) = 1. In
characteristic 0, we can just write Dn = 1

n! (
d
dx )

n. If n = p and char k ≤ p, however,
this fraction isn’t defined! The operator still exists, though. Operators like this
can be constructed as “divided power differential operators”, but they’re tricky to
work with; and, in any case, their behavior isn’t captured by the Lie algebra of a
group. Solution: include higher-order infinitesimals intrinsically! This is the origin
of the theory of formal groups.
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2 DORON GROSSMAN-NAPLES

A Lie algebra describes the algebraic properties of first-order differential oper-
ators, which are dual to linear functions, so the natural way to extend to higher-
order infinitesimals is to take formal groups to be dual to formal power series
(hence the name). The bracket of vector fields is the universal operation on objects
which preserve the local algebraic structure of linear functions; and power series
have their own local algebraic structure to preserve. Note that for power series
of the form f(t) = t + a1t

2 + a2t
3 + . . ., we have a formal composition opera-

tion. This looks something like (t + α1t
2 + α2t

3 + . . . ) ◦ (t + β1t
2 + β2t

3 + . . . ) =
t+(α1+β1)t

2+(α2+2α1β1+β2)t
3+ . . .. (The coefficients are not binomial coeffi-

cients, by the way; be careful.) The fact that the constant term is zero guarantees
that the composition converges in the Krull topology, so this is a well-defined oper-
ation. It is “obviously” associative, it has identity t, and the existence of inverses is
guaranteed by the Weierstrass preparation theorem. Therefore, they form a group,
and this is the structure we want to dualize.

Definition 1.1. Let R be a ring. A one-dimensional formal group law on R is a
formal power series F (x, y) ∈ R[[x, y]] such that

i) F (x, y) = x+ y (mod (x, y)2) and
ii) F (x, F (y, z)) = F (F (x, y), z).

If F (x, y) = F (y, x), we say that the formal group law is commutative.
An n-dimensional formal group law is defined similarly as a formal power series

F (x1, . . . , xn, y1, . . . , yn) over R satisfying analogous axioms.

Remark 1.2. The existence of inverses follows automatically from these axioms. To
be precise, there exists G such that F (x,G(x)) = F (G(x), x) = 0.

The idea of this definition is that F is supposed to be the power series represent-
ing the multiplication operation in some geometric group. The power series compo-
sition group defined above describes the multiplication in the infinite-dimensional
group of “formal automorphisms at 0” of whatever scheme we’re working on. This
is essentially the universal “formal change of coordinates group”, as we will see
later.

Some examples: the simplest possible example is the additive formal group law,
F (x, y) = x + y. This should be thought of as the infinitesimalization of the
additive group Ga(R) = (A1(R),+) at 0. Similarly, the multiplicative formal group
law, F (x, y) = x+y+xy, is the infinitesimalization at 1 of the multiplicative group
Gm(R) = (R∗, ·). The relationship between these two laws is essentially a logarithm;
this is literally true in the case of Lie groups, where there is an isomorphism between
them induced by the exponential/log isomorphism. We will see that this is in fact
true more generally when interpreted appropriately: the universal one-dimensional
commutative formal group law is obtained from the additive formal group law by
changing coordinates using the exponential. More on that later. One last example
(from number theory) is the Lubin-Tate formal group law on the p-adic integers

Ẑp, which is the unique (up to “strict isomorphism”) formal group law such that
the map x 7→ px + xp is an endomorphism. This formal group law describes the
deformation theory of ramified extensions, facilitating the construction of abelian
extensions of number fields in local class field theory. (This is also connected to
Morava E-theory in stable homotopy—stay tuned.)
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2. Formal Geometry

So far, I’ve given you a description of formal groups in coordinates. Much like al-
gebraic groups, however, they also have an intrinsic geometric description, and this
description is crucial to describing them in full generality. Therefore, to understand
formal groups in the language of schemes, I’ll now betray the word “informal” in
the title of my talk and categorify. For the rest of the talk, I will follow standard
practice in formal geometry and assume all rings to be Noetherian.

Definition 2.1. An adic ring is a topological ring R which carries some Krull
topology (the topology generated by translations of powers of some ideal), and
which is complete and Hausdorff.

Remark 2.2. Note that the ideal defining the topology is not part of the struc-
ture. In general, multiple ideals of a complete ring can give rise to the same Krull
topology—take I and I2, for instance.

Adic rings are a generalization of power series rings with their usual Krull topol-
ogy. In fact, by the Cohen structure theorem, any regular local adic ring is guar-
anteed to be a power series ring provided it is equicharacteristic (i.e. contains a
field). If it is of mixed characteristic, it is still a power series ring (though over a
DVR rather than a field) as long as it is unramified.

For any adic ring R, we can define an associated locally ringed space Spf R,
the formal spectrum of R, which is colim−−−→Spec(R/In). This colimit is taken in
locally ringed spaces, and while this particular construction involves a choice of
generating ideal I, the formal spectrum is independent of this choice; it’s just a
convenient neighborhood system. This construction, which is the geometric ana-
logue of the completion of a ring, can in fact be applied this to any sheaf of ideals
on a scheme to get a “formal scheme” ([3], II.9). Such objects can be described
as ind-schemes (formal filtered colimits of schemes) and realized as presheaves in a
generalized functor-of-points approach. Today, however, we’ll view them as locally
ringed spaces.

Definition 2.3. A formal scheme is a locally ringed space which is locally isomor-
phic to the formal spectrum of an adic ring. If it is locally isomorphic to the formal
spectrum of a formal power series ring, we call it a formal Lie variety.

Warning 2.4. It’s important to note that not every formal scheme is a formal
completion of an ordinary scheme. Formal schemes which can be obtained in this
way are called algebraizable.

This definition actually includes all ordinary schemes as well by completing at
the trivial sheaf (as we would expect, since these are supposed to be pro-schemes).
As in the classical case, we can talk about relative formal schemes, and in particular
the category of formal schemes over a ring R. We’ll be particularly interested in
formal Lie varieties over affine schemes, since they give us a geometric description
of formal groups1.

Definition 2.5. A formal group over R is a group object in the category of formal
Lie varieties over R.

1Note that formal Lie varieties are actually relatively sparse among formal schemes. For instance,

the completion at a closed subscheme Y is a formal Lie variety if and only if Y is a 0-dimensional
regular scheme which is equicharacteristic or unramified of mixed characteristic.
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Given this definition, it’s not hard to verify that an affine formal group is the
same as a formal group law. More precisely, we have the following result.

Theorem 2.6. Define an n-dimensional formal group law on a ring R to be an
R-affine formal group of relative dimension n, i.e. a formal group over R whose
underlying relative formal scheme is Spf(R[[x1, . . . , xn]]). Then this definition co-
incides with the definition in coordinates given above.

With this generalization, we can finally give a rigorous description of how for-
mal groups interpolate between geometric groups and their Lie algebras. The Lie
algebra of an n-dimensional formal group law F is defined to be Rn with bracket
[x,y] = F2(x,y)− F2(y,x). This definition extends to all formal groups by taking
local coordinates. On the other hand, the formal group of a smooth and unrami-
fied2 algebraic group G is defined simply to be the formal completion of G at the
identity. This is a rich source of formal groups, and gives rise to things like elliptic
cohomology.

Theorem 2.7. The composite functor GpSch/R → FGR → LieAlgR is the ordinary
Lie algebra functor.

3. Classification of Formal Groups

Many of the results of this and the next section can be found in [1].
Now we have an appropriate notion of formal group, we’d like to know about

their structure. As promised, this structure coincides with that of Lie algebras in
characteristic 0.

Theorem 3.1. Let R be a ring of characteristic 0. Then the Lie algebra functor
FGR → LieAlgR is an equivalence of categories.

Proof. The idea of the proof is to give an inverse functor, and this functor is given
by the Baker-Campbell-Hausdorff formula from Lie theory: eXeY = eZ , where Z is
given by a power series Z = X + Y + 1

2 [X,Y ] + 1
12 [X, [X,Y ]] + 1

12 [[X,Y ], Y ] + . . ..
This describes the group multiplication, and points of the formal group are just
formal exponentials of Lie algebra elements. □

Although this result only applies in characteristic 0 due to the division required,
the notion of exponential does generalize in a useful way.

Theorem 3.2. For each n ∈ N, there is a universal commutative n-dimensional
formal group (R,F ). That is, R represents the cocartesian fibration CFGLn →
CRing, with a map f : R → S inducing the formal group law f∗(F )(x,y) ∈ S[[x,y]].

I won’t describe the proof in detail (though see below for the case n = 1), but
suffice to say that one can take a free algebra with relations describing the axioms
of a formal group law, which is equivalent to an explicit construction in terms of
Witt vectors; see ([4], section 11) for details.

Of particular interest is the one-dimensional case.

2By “unramified”, I mean that the map Spec(κ(e)) → G classifying the identity is an unramified

map of schemes. This is a geometrization of the ramification condition of the Cohen structure
theorem.
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Definition 3.3. Write P = Z[aij ]i,j∈Z+ , and define a formal power series µ(x, y) =

x + y +
∑

aijx
iyj ∈ P [[x, y]]. Then we can write µ(x, µ(y, z)) − µ(µ(x, y), z) =∑

bijkx
iyjzk for some coefficients bijk ∈ P . Let I be the ideal generated by all bijk

and aij − aji. Then the Lazard ring is defined as L = P/I.

The Lazard ring with µ̄ is the universal one-dimensional commutative FGL,
a fact which follows directly from the definition. However, as given, the actual
structure of L is complicated to understand. The following result, therefore, is
quite miraculous.

Theorem 3.4 (Lazard). The Lazard ring L is isomorphic to a polynomial algebra
on infinitely many generators: L ∼= Z[b1, b2, . . . ].

This isomorphism is given as follows, where by convention b0 = 1. Writing R for
the polynomial ring, define a power series exp ∈ R[[x]] by exp(y) =

∑
i∈N biy

i+1.
Then exp is invertible with respect to composition, so write log for its inverse.
Define a formal group law on R by µR(x, y) = exp(log(x)+log(y)). This is obviously
one-dimensional and commutative, and the classifying map L → R for this FGL
turns out to be an isomorphism. The proof, as well as explicit formulae for the
coefficients of log, can be found in ([1], section 7). This result can be interpreted
as saying that any one-dimensional commutative formal group law is built from an
additive formal group law. In fact, in the characteristic 0 case, we can actually
transfer this description from the universal FGL to any particular FGL, which
recovers the BCH trivialization from above.

This gives us a classification of (1d commutative) formal group laws, but what
about formal groups? For that, we have to descend3 to stacks. Recall from earlier
that we have an action of the composition group scheme of formal power series
G = Spec(Z[b1, b2, . . . ]) on formal group laws; for a point f = t + b1t

2 + . . ., the
action is given by f · F (x, y) = f(F (f−1(x), f−1(y))). I called this the “universal
formal change of coordinates group”, which is true for formal group laws, but it
needs to be modified for the non-affine case. Accordingly, we enhance this slightly
to the group scheme G+ = Gm ⋊G of formal power series b0t+ b1t

2 + . . . with the
obvious action. Then we have the following (cf [5], lecture 11):

Definition 3.5. The moduli stack of formal groups is the quotient stack MFG =
Spec(L)/G+.

Theorem 3.6. The moduli stack of formal groups with µ̄ is the universal formal
group. That is, the cartesian fibration CFG1 → CRing is represented by MFG.

It is not known whether MFG is a Deligne-Mumford stack. It is, however,
stratified by Deligne-Mumford substacks Mn

FG. A formal group in the nth stratum
is said to have height n. Writing +̄ for the formal group law, a formal group over a

ring of characteristic p has height at least n iff the coefficient vi of x
pi

in the p-fold
formal sum x+̄ . . . +̄x is 0 for i < n, and height exactly n if it has height at least n
and vn is invertible.

3Pun intended.
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4. The Music of the Spheres

My initial inclination was to call this book The Music of the Spheres,
but I was dissuaded from doing so by my diligent publisher, who is ever
mindful of the sensibilities of librarians.

Doug Ravenel, [6]

The biggest reason for people’s interest in formal groups today is undoubtedly
the peculiar connection between algebraic topology and algebraic geometry known
as chromatic homotopy theory. An introduction to the chromatic point of view
would be a talk in itself, but I’ll briefly summarize what’s going on here.

The main goal of stable homotopy theory is to compute the stable homotopy
groups of spheres π∗(S). A typical way to do this is using an Adams spectral se-
quence. This is a spectral sequence abutting to the (p-completed) stable homotopy
groups of spheres, or more generally to the graded hom group between any two
spectra. This spectral sequence arises by a filtration coming from “killing off co-
homology”, one dimension at a time (the Adams resolution); this can be thought
of as killing off the cells of a CW complex one dimension at a time. Because this
is described cohomologically, one can generalize and replace ordinary Fp cohomol-
ogy with other multiplicative cohomology theories, and in particular with complex
cobordism, yielding the Adams-Novikov spectral sequence. This spectral sequence
computes the stable homotopy groups in their entirety, but is correspondingly more
complicated. This is where the connection to formal groups enters in. (All formal
groups are henceforth assumed one-dimensional and commutative.)

Theorem 4.1. The homotopy ring of complex cobordism is the Lazard ring: π∗(MU) ∼=
L with grading given by deg(bi) = 2i.

We find that any complex-oriented cohomology theory (E∞ ring spectrum with
a ring map from MU4) therefore admits a formal group law on its homotopy ring.
This can also be described explicitly: CP∞ has a group structure in Ho(Top) arising
from the tensor product of complex line bundles. Applying a complex-oriented
cohomology theory E to CP∞ yields a power series ring over π∗(E) in one variable
(the generalized Chern class), and the induced product on this ring defines a formal
group law on π∗(E).

Conversely, given a formal group law (R,F ), one can define a functor MU ⊗LR;
but, since R need not be flat, this may fail to be an actual cohomology theory. The
Landweber Exact Functor Theorem gives a criterion for this functor to in fact be
a cohomology theory.

Theorem 4.2 (Landweber). Let (R,F ) be a formal group law, and for each prime
number p let vi be as defined above. If v0, v1, v2, . . . , vn is a regular sequence in R
for each p and each n, then MU ⊗L R is a cohomology theory.

Using this theorem, we can lift the stratification of MFG to a filtration in the
world of topology. The deformation theory of the stratification is described by a
generalized form of the Lubin-Tate formal group law, and these formal group laws
classify (via LEFT) a height-ordered collection of complex-oriented cohomology
theories called Morava E-theories. This is where the term “chromatic” comes from:
much how like light can be understood by splitting it into different colors in the

4This can be thought of as a generalized Chern class.
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chromatic spectrum, or how musical notes can be classified by dividing them into a
discrete set of notes in the chromatic scale, splitting complex-ordered cohomology
theories by height allows us to separate the different patterns that show up in the
stable homotopy groups of spheres. Localizing sequentially at Morava E-theories
gives a height-based filtration called the “chromatic tower”, and the associated
“chromatic” spectral sequence converges to the E2 page of the Adams-Novikov
spectral sequence. ReplacingMFG with its analogue in spectral algebraic geometry,
the nonconnective spectral moduli stack of oriented formal groups, actually yields
the entire Adams-Novikov spectral sequence ([2])—but that’s another story.
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